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systematically emphasized and encouraged in structure 
reports. 

3. Where uncertainty arises in assignment, a given struc- 
ture may be incorporated in both enantiomeric space groups 
but with half  the weight (which takes care of the probability 
aspect and keeps the observed data set unaltered). 

If these are acceptable it could raise a moot point whether 
or not it is desirable to include in case B two subdivisions 
such as P2÷/P2  - where the +, - symbols refer to, for 
example, chirality at the molecular level where such a 
distinction is possible (such as known L- or D-amino acids). 
Since such prior distinction may not always be possible it 
is necessary to adopt a more specific and experimentally 
determinable physical attribute such as optical rotation in 
the solid state for the specific crystal used for X-ray studies. 
Although the latter may be difficult from the experimental 

point of view, the need for such an identification/charac- 
terization is felt to be highly desirable. 

I would like to thank Professors Brock and Dunitz for a 
preprint of their letter and Professor K. S. Chandrasekaran 
for bringing to my attention recent work at the particle- 
physics level on chirality. 
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Abstract 

A new method of diffraction-pattern calculation is proposed 
and tested on quasicrystals. With use of an appropriately 
defined reference lattice, a structure factor can be well 
approximated by a rapidly convergent series expansion of 
a variable u that describes nearest distances between atomic 
positions and points of the reference lattice. Only the first 
few terms are significant for difffraction-pattern calculation. 
The possibility of using the Debye-Waller  approximation 
is discussed. In this case an appropriate shift of the reference 
structure is required. Calculations based on the Debye- 
Waller formula in real and phason spaces give similar 
results. 

Introduction 

A new approach to the calculation of diffraction patterns 
has recently been proposed (Wolny, 1991; Wolny & Pytlik, 
1992). The diffraction intensity is calculated in real space 
using a distribution of atomic positions around a periodic 
reference lattice of points with period equal to the 
wavelength for a given scattering wave vector. 

For each scattering vector k, a one-dimensional reference 
lattice of points {kt} can be defined such that 

k ' k t  =/cAt = 2Irl, (1) 

where l is an integer. The vectors kz are parallel to the 
scattering vector k and their lengths are given by 

At = Aol, (2) 

where ;% = 2 9 / k  is the wavelength for scattering vector k. 
It should be noted that the vectors kt depend on k, which 
can be expressed by writing kz = kz(k). For any position 
vector r ,  and its component r k , parallel to k, one can choose 
a vector k~ such that (Fig. 1) 

k rn = kt + an, (3) 

0108 -7673 / 92/060918 -04506.00 

where the length of un is less than or equal to A0/2. Vectors 
k rn, kt and u,, are all parallel. With use of (1) and (3), the 

structure factor for a finite arrangement of N particles at 
positions r ,  and with form factor f ,  can be written as 

N N co 

F(k)= Z fn exp(iku.)= Y. fn Y (iku.)"/mt, (4) 
n = l  n = l  m = O  

and since 

ku, <- 7r (5) 

this series expansion is rapidly convergent and the first few 
terms are dominant. 

The real and imaginary parts of the structure factor are 
given by 

Re [F(k)]  = N(1 - k2(u2)/2! + k4(u4)/ 4 ! -  k6(u6)/ 6! + . . .  ), 

(6a) 

I m [ F ( k ) ] = N ( k ( u ) - k 3 ( u 3 ) / 3 ! + k S ( u S ) / 5 ! - . . . ) ,  (6b) 

where 

N 

(u m) = ( l / N )  Z f , ( u , )  m (7) 
n = l  

is an ruth moment of variable u. Finally, the intensity of 
the diffraction pattern for a given scattering vector that is 

Fig. 1. The variable u describes the shortest distance of the projec- 
tion of the atomic position (filled circles) from the reference 
lattice ('wave lattice' - open circles). 
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normalized to N 2 can be expressed as 

I ( k ) / N  2 = (1 - kE(u2)/21 + k4(u4) /41- . . . )2  

+( k ( u ) -  ka(u3)/31+. . . )2 (8) 

and it depends only on the length of scattering vector and 
moments of variable u. It should be noted here that the 
variable u and its moment distribution depend on the 
scattering vector. 

Application to quasicrystals 

The discussed method is quite general but for its presenta- 
tion we choose the analysis of the diffraction pattern of a 
two-dimensional quasicrystal. We have also performed 
many tests for other structures, such as single crystals, twins 
and random and amorphous structures and we have found 
that quasicrystals are an instructive test of the method. 
Their diffraction pattern is rather complicated but, for peaks 
with kz = 0  [kz is the component of the five-dimensional 
scattering vector along the main diagonal of the five- 
dimensional cube (Jari~, 1986)] when Robinson triangles 
are used for tiling (Wolny & Pytlik, 1991), analytical 
expressions describing peak intensities can be obtained 
using a five-dimensional representation. This facilitates 
comparison of diffraction patterns obtained for different 
levels of the approximation to the diffraction pattern 
obtained by Fourier analysis. 

The diffraction pattern of an ideal quasicrystal is well 
understood in higher-dimensional representation (Elser, 
1985, 1986; Kalugin, Kitaev & Levitov, 1985; Duneau & 
Katz, 1985). For two-dimensional Penrose tiling, five- 
dimensional representation has been extensively used (de 
Bruijn, 1981; Jari~, 1986; Strandburg, 1989; Tang & Jari6, 
1990; Wolny & Pytlik, 1991; Wolny, 1991). Higher- 
dimensional analysis allows calculation of the diffraction- 
peak intensities using Debye-Waller approximation and 

mean square fluctuations of phason-space coordinates. 
Diffraction for a one-dimensional Fibonacci chain has also 
been extensively studied (Jagodzinski, 1991). 

The structure used for the diffraction calculations was a 
Penrose-like tiling obtained by the inflation method using 
Robinson triangles; it has been described by Wolny, Pytlik 
& Lebech (1988), (1990), Lebech, Wolny & Pytlik (1988) 
and Wolny & Pytlik (1991). A one-dimensional cut of the 
diffraction pattern along the y direction (kx = 0) was calcu- 
lated and is shown in Fig. 2. A logarithmic scale was used 
for the scattering vector as it allows convenient presentation 
of the first three series of peaks, which are periodic in this 
scale. These series of peaks are described by Jari6 (1986) 
and Wolny & Pytlik (1991) as 

k y = k o r  n, n = 0 , 1 , 2 , . . .  (9) 

with different values of/Co approximately equal to 2.955, 
5.909 and 6.607 for the three series. The values of r is about 
1.618. Peak intensities of these series were linked by a solid 
line (Fig. 2) calculated according the formula (Wolny, 1991) 

I ( k y ) / N  2=exp  (-0.401 4 2 5ko/ky). (10) 

This is a Debye-Waller approximation that is calculated 
in phason space (Wolny & Pytlik, 1991). It is an analytical 
expression of the envelope function (Wolny, Pytlik & 
Lebech, 1988, 1990; Lebech, Wolny & Pytlik, 1988) that 
connects peak intensities of all peaks belonging to the same 
series (Fig. 2). It follows from this figure that the Debye- 
Waller formula is valid only for the most intense peaks and 
deviations from the envelope function of the low-intensity 
peaks are observed in Fig. 2. It has already been shown 
(Wolny, 1991; Wolny & Pytlik, 1992) that there are no 
visible differences between the diffraction patterns obtained 
directly from the Fourier transform and those obtained 
from (8) with use of at least the first eight moments of 
variable u. 

I . _ . _ . - - -  ~ - - -  

/ / 
/ 

/ /  / /  
1 

/ ii ! 

o2/IL.   , , ,  

. . . . . .  1 o  . . . . . . .  bo 
kv 

Fig. 2. Diffraction pattern obtained for a Penrose-like tiling and 
calculated along the ky direction for kx = 0. The diffraction 
pattern consists of a series of peaks that are periodic in the 
logarithmic scale of the scattering vector. Peak intensities belong- 
ing to the first three series of peaks, with/Co approximately equal 
to 2.955, 5.909 and 6.607, have been connected by solid lines 
calculated according to the Debye-Waller approximation in 
phason space [equation (10)]. 

Debye-Waller approximation 

The Debye-Waller approximation was used to describe the 
reduction of peak intensity caused by the thermal vibration 
of atoms around lattice positions. In this case, if the origin 
is chosen at a lattice point and the scattering vector corre- 
sponds to the reciprocal-lattice vector, the imaginary part 
of the structure factor is equal to zero and the first two 
terms of the expansion of the real part (6a) become 
dominant. The diffraction intensity can then be approxi- 
mated by the well known Debye-Waller formula for a 
one-dimensional variable u, 

I / N  2 = e x p  ( - k 2 ( u 2 ) ) .  (11) 

The series expansion of (11) is 

I / N  2 = 1 - k2(u2)+ ka(u2)2/2!- k6(u2)3/3!+.. .  (12) 

and the first two terms of this expansion are similar to the 
first two terms of (8) after squaring, 

I / N  2~- (1 - k2(u2)/2) 2 = 1 - k2(u 2) + (k2(u2)/2)2 

= 1 - k2(u2). (13) 

To calculate a diffraction pattern using (11), one should 
check first that the imaginary part of the structure factor 
is negligible. For centrosymmetric distributions this is 
automatically fulfilled (all odd moments of variable u are 
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equal to zero) if the center is chosen as the origin. In general, 
the above requirement can be achieved by an appropriate 
adjustment of a reference lattice to the real structure (a 
shift of the reference lattice along the direction of the 
scattering vector). In Fig. 3 the first four moments were 
plotted against the shift Y0 of the structure along the y 
direction and for three different scattering vectors. When 
the scattering vector approaches any peak position (in the 
case of Fig. 3 the peak considered is at k r = 20.25) the 
values of all the moments start to oscillate with increasing 
amplitude of oscillation. For calculation of the diffraction 
pattern according to (11) one can use this shift value, 
indicated by arrows in Fig. 3, which corresponds to the first 
moment being zero and the second moment being minimum. 
For this particular shift the third moment (Fig. 3c) is very 
close to zero and the fourth moment (Fig. 3d) is close to 
its minimum value. Analysis of other peaks fully supports 
the choice of the shift corresponding to the first moment 
being zero for the Debye-Waller approximation. However, 
it should be noted that the appropriate shifts may be 
different for different peaks observed in the diffraction 
pattern. 

To test the hypothesis that the choice of the shifts corre- 
sponding to the first moment of variable u being zero is 
sufficient to allow use of the Debye-Waller approximation, 
the following calculations have been made. The biggest 
difference between the shifts, corresponding to the first and 
third moments being zero, was observed for lower-intensity 
peaks and it approached zero for higher-intensity peaks. 
For example, the peak observed at ~ - 4.78 has normalized 
intensity of about 0.18 and it is the lowest-intensity peak 
observed for the first series of peaks (Fig. 2). For this peak, 
the zero of the first moment is at a shift of 0.4053 and the 
zero of the third moment corresponds to a shift of 0.4088. 
The zero of the fifth moment is at 0.4090. Use of the shift 
of 0.4053 gives values of the third and fifth moments, 
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Fig. 3. Values of the first four moments of the variable z~y =- u vs 
the shift Yo of the real structure for different scattering vectors: 
ky = 19.0 ( . . . .  ); ~ = 20.0 (- - -); ky = 20.25066 - peak posi- 
tion ( ); (a) first moment, (b) second moment, (c) third 
moment, (d) fourth moment. The arrows indicate the value of 
the shift used for diffraction-pattern calculations according to 
the Debye-Waller formula (Fig. 4) at which the first moment is 
zero and the second moment is at its minimum. 

multiplied by k3/3! and k5/5! respectively, which are less 
than 0.5% of the second moment multiplied by k2/2. All 
higher moments can be neglected. 

Choice of the correct shift is essential, as otherwise the 
Debye-Waller approximation gives completely unreliable 
results for the diffraction intensity. The diffraction pattern 
of the discussed structure, calculated according to the 
Debye-Waller approximation (11), is shown in Fig. 4. It 
appears to be similar to the diffraction pattern calculated 
by the Fourier transform (Fig. 2); however, some essential 
differences can easily be noticed. The background is con- 
stant and equal to 0.037, the value expected for a uniform 
distribution of variable u. The higher-intensity peaks are 
equal for the Fourier transform and the Debye-Waller 
approximation. Peaks of lower intensity start to differ; 
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Fig. 4. Diffraction pattern obtained for a Penrose-like structure 
and calculated using the Debye-Waller approximation in real 
space [equation (11)]. An appropriate shift of the real structure 
was used to obtain this pattern (see text). Solid lines connecting 
the maxima of the peaks are the same as in Fig. 2 and describe 
the Debye-Waller approximation in phason space. 
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Fig. 5. Diffraction pattern for a Penrose-like structure calculated 
by the formula I / N  2= (1-k2{u2)/2) 2, which is derived from 
the series expansion [equation (8)] limited to the second moment 
of variable u together with the shifting procedure (see text) to 
reduce the imaginary part of the structure factor. 
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however, excellent correlation is observed between the peak 
intensities obtained from the Debye-Waller approxima- 
tions in real and phason spaces. 

Finally, one further property of the Debye-Waller 
approximation should be emphasized. This approximation 
is valid to the order of the second moment of variable u. 
However, the series expansion (8), limited to the second 
moment, together with the shift procedure discussed above, 
gives the diffraction pattern shown in Fig. 5. In this case, 
the higher-intensity peaks are calculated correctly, but the 
background is extremely high. This comes from the fact 
that for the background calculation the higher moments 
are as important as the second (compare the second and 
the fourth moments in Fig. 3 for ky = 19, i.e. for a scattering 
vector that is far from the peak position). The Debye-Waller 
approximation (Fig. 4) suppresses the background oscilla- 
tions observed in Fig. 5 for diffraction patterns calculated 
according to (8) with a series expansion limited to the 
second moment only. 

Concluding remarks 

A method of diffraction-pattern calculation based on a 
series expansion of structure factors is discussed. If the 
moments of the u distribution are constant (i.e. they do not 
depend on the number of atoms and/or  on the dimensions 
of the sample), the calculated diffraction pattern consists 
of well defined Bragg peaks that scale as N 2. This con- 
clusion is very important for noncrystalline structures and 
especially for quasicrystals. Of course, one can obtain 
similar results for the original Penrose tiling by performing 
the higher-dimensional analysis. However, there are quasi- 
crystals that are perfectly ordered but which cannot be fully 
analyzed in higher dimensions. For example, the structures 
obtained by the inflation method using two Robinson 
triangles have their hz components undetermined (Wolny 
& Pytlik, 1991), where hz is a perpendicular-space position 
component (Jarir, 1986), and only certain peaks (with cor- 
responding kz--0) can be analyzed in five dimensions. 

The possibilities of using the Debye-Waller approxima- 
tion in real and phason spaces have been discussed. In real 
space, the Debye-Waller approximation requires the calcu- 
lation of the second moment of the u distribution. This 
moment depends on the relative shift of the real structure 
and reference lattices, showing large oscillations for the 
scattering vectors approaching peak positions. The second 
moment is dominant for a certain shift, where the first 
moment is zero and the imaginary part of the structure 
factor is negligibly small. Use of the above analysis allows 
calculation of the diffraction pattern according to the 
Debye-Waller formula. Similar results for the intensities 
were obtained from analysis in real and phason spaces for 
quasicrystals. 

I would like to thank L. Pytlik for helpful discussions. 
Support from grant no. 2 0918 91 01 is acknowledged. 
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